吴仕莲1,胡 涛2,汪增福1,郑志刚1,赵丙坤2*,祝燕林2,杨 洋2
(1.中国科学技术大学信息科学技术学院,安徽合肥 230000;
2.泸州老窖股份有限公司,四川泸州 646000)
摘要:近年来,深度学习技术在不同计算机视觉任务中都取得了重大突破,基于深度学习的视觉检测方法具有精度高、鲁棒性强的优势。本文针对酒瓶包装缺陷检测领域进行研究,设计了一种基于网格的多尺度缺陷检测模型,通过对原始图像划分网格,将缺陷映射到对应网格位置以解决缺陷形状多样、难以定义的问题;并在不同尺度的特征上检测缺陷,解决酒瓶缺陷尺度变化大的问题。
关键词:缺陷检测;深度学习;多尺度;全卷积网络
中图分类号:TS206.1 文献标识码:A 文章编号:1674-506X(2023)05-0104-0005
Multi-scale Bottle Defect Detection Based on Grid Segmentation
WU Shilian1,HU Tao1,WANG Zengfu1,ZHEN Zhigang1,ZHAO Bingkun2*,ZHU Yanlin2,YANG Yang2
(1.School of Information Science and Technology, University of Science and Technology of China,
Hefei Anhui 230000, China;
2.Luzhou Laojiao Co., Ltd., Luzhou Sichuan 646000, China)
Abstract:In recent years, deep learning technologies have made significant breakthroughs in various computer vision tasks. Deep learning- based visual inspection methods offer advantages such as high accuracy and strong robustness. This paper focuses on the field of bottle defect detection and presents a research study that designs a multi-scale defect detection model based on grids. By dividing the original image into grids, defects are mapped to their respective grid positions to address the issue of diverse and hard-to-define defect shapes. Additionally, defects are detected on features at different scales, addressing the challenge of varying defect scales in glass bottle defects.
Keywords:defect detection; deep learning; multi-scale; fully convolutional network
doi:10.3969/j.issn.1674-506X.2023.05-018
收稿日期:2023-30-12
作者简介:吴仕莲(1994-)男,博士,工程师。研究方向:缺陷检测。
*通信作者:赵丙坤(1979-)男,本科,高级工程师。研究方向:包材采购、包装设备开发。
引用格式:吴仕莲,胡涛,汪增福,等.基于网格分割的多尺度酒瓶缺陷检测研究[J].食品与发酵科技,2023,59(5):104-108.